147 research outputs found

    Direct evidence of an efficient energy transfer pathway from jellyfish carcasses to a commercially important deep-water species

    Get PDF
    Here we provide empirical evidence of the presence of an energetic pathway between jellyfish and a commercially important invertebrate species. Evidence of scavenging on jellyfish carcasses by the Norway lobster (Nephrops norvegicus) was captured during two deployments of an underwater camera system to 250–287 m depth in Sognefjorden, western Norway. The camera system was baited with two Periphylla periphylla (Scyphozoa) carcasses to simulate the transport of jellyfish detritus to the seafloor, hereby known as jelly-falls. N. norveigus rapidly located and consumed a large proportion (>50%) of the bait. We estimate that the energy input from jelly-falls may represent a significant contribution to N. norvegicus energy demand (0.21 to 10.7 times the energy required for the population of N. norvegicus in Sognefjorden). This potentially high energetic contribution from jelly-falls highlights a possible role of gelatinous material in the support of commercial fisheries. Such an energetic pathway between jelly-falls and N. norvegicus could become more important with increases in jellyfish blooms in some regions

    Has phytodetritus processing by an abyssal soft-sediment community recovered 26 years after an experimental disturbance?

    Get PDF
    The potential harvest of polymetallic nodules will heavily impact the abyssal, soft sediment ecosystem by removing sediment, hard substrate, and associated fauna inside mined areas. It is therefore important to know whether the ecosystem can recover from this disturbance and if so at which rate. The first objective of this study was to measure recovery of phytodetritus processing by the benthic food web from a sediment disturbance experiment in 1989. The second objective was to determine the role of holothurians in the uptake of fresh phytodetritus by the benthic food web. To meet both objectives, large benthic incubation chambers (CUBEs; 50 × 50 × 50 cm) were deployed inside plow tracks (with and without holothurian presence) and at a reference site (holothurian presence, only) at 4100 m water depth. Shortly after deployment, <sup>13</sup>C- and <sup>15</sup>N-labeled phytodetritus was injected in the incubation chambers and during the subsequent 3-day incubation period, water samples were taken five times to measure the production of <sup>13</sup>C-dissolved inorganic carbon over time. At the end of the incubation, holothurians and sediment samples were taken to determine biomass, densities and incorporation of <sup>13</sup>C and <sup>15</sup>N into bacteria, nematodes, macrofauna, and holothurians. For the first objective, the results showed that biomass of bacteria, nematodes and macrofauna did not differ between reference sites and plow track sites when holothurians were present. Additionally, meiofauna and macrofauna taxonomic composition was not significantly different between the sites. In contrast, total <sup>13</sup>C uptake by bacteria, nematodes and holothurians was significantly lower at plow track sites compared to reference sites, though the number of replicates was low. This result suggests that important ecosystem functions such as organic matter processing have not fully recovered from the disturbance that occurred 26 years prior to our study. For the second objective, the analysis indicated that holothurians incorporated 2.16 × 10<sup>−3</sup> mmol labile phytodetritus C m<sup>−2</sup> d<sup>−1</sup> into their biomass, which is one order of magnitude less as compared to bacteria, but 1.3 times higher than macrofauna and one order of magnitude higher than nematodes. Additionally, holothurians incorporated more phytodetritus carbon per unit biomass than macrofauna and meiofauna, suggesting a size-dependence in phytodetritus carbon uptake

    Rapid scavenging of jellyfish carcasses reveals the importance of gelatinous material to deep-sea food webs

    Get PDF
    Jellyfish blooms are common in many oceans, and anthropogenic changes appear to have increased their magnitude in some regions. Although mass falls of jellyfish carcasses have been observed recently at the deep seafloor, the dense necrophage aggregations and rapid consumption rates typical for vertebrate carrion have not been documented. This has led to a paradigm of limited energy transfer to higher trophic levels at jelly falls relative to vertebrate organic falls. We show from baited camera deployments in the Norwegian deep sea that dense aggregations of deep-sea scavengers (more than 1000 animals at peak densities) can rapidly form at jellyfish baits and consume entire jellyfish carcasses in 2.5 h. We also show that scavenging rates on jellyfish are not significantly different from fish carrion of similar mass, and reveal that scavenging communities typical for the NE Atlantic bathyal zone, including the Atlantic hagfish, galatheid crabs, decapod shrimp and lyssianasid amphipods, consume both types of carcasses. These rapid jellyfish carrion consumption rates suggest that the contribution of gelatinous material to organic fluxes may be seriously underestimated in some regions, because jelly falls may disappear much more rapidly than previously thought. Our results also demonstrate that the energy contained in gelatinous carrion can be efficiently incorporated into large numbers of deep-sea scavengers and food webs, lessening the expected impacts (e.g. smothering of the seafloor) of enhanced jellyfish production on deep-sea ecosystems and pelagic–benthic coupling

    Invertebrate communities on historical shipwrecks in the western Atlantic : relation to islands

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 566 (2017): 17-29, doi:10.3354/meps12058.Shipwrecks can be considered island-like habitats on the seafloor. We investigated the fauna of eight historical shipwrecks off the east coast of the U.S. to assess whether species distribution patterns on the shipwrecks fit models from classical island theory. Invertebrates on the shipwrecks included both sessile (sponges, anemones, hydroids) and motile (crustaceans, echinoderms) species. Invertebrate communities were significantly different among wrecks. The size and distance between wrecks influenced the biotic communities, much like on terrestrial islands. However, while wreck size influenced species richness (alpha diversity), distance to the nearest wreck influenced community composition (beta diversity). Alpha and beta diversity on the shipwrecks were thus influenced by different abiotic factors. We found no evidence of either nested patterns or non-random co-occurrence of morphotypes, suggesting that the taxa on a given shipwreck were randomly selected from the available taxon pool. Species present on the shipwrecks generally had one of two reproductive modes: most motile or solitary sessile species had long-duration planktotrophic larvae, while most encrusting or colonial sessile species had short-duration lecithotrophic larvae and underwent asexual reproduction by budding as adults. Short-duration larvae may recruit to their natal shipwreck, allowing them to build up dense populations and dominate the wreck surfaces. A high degree of dominance was indeed observed on the wrecks, with up to 80% of the fauna being accounted for by the most common species alone. By comparing the shipwreck communities to known patterns of succession in shallow water, we hypothesize that the shipwrecks are in a stage of mid-succession.This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-0829517. Funding for this project was supplied by the Bureau of Ocean Energy Management (BOEM), under contract to CSA Ocean Sciences, Inc. (contract M10PC00100) in partnership with the National Oceanographic 377 Partnership Program

    Sediment profile imaging: laboratory study into the sediment smearing effect of a penetrating plate

    Get PDF
    Sediment profiling imaging (SPI) is a versatile and widely used method to visually assess the quality of seafloor habitats (e.g., around fish farms and oil and gas rigs) and has been developed and used by both academics and consultancy companies over the last 50 years. Previous research has shown that inserting the flat viewport of an SPI camera into the sediment can have an impact on particle displacement pushing oxygenated surface sediments to deeper sediment depths and making anthropogenically-disturbed sediment appear healthier than they may actually be. To investigate the particle displacement that occurs when a flat plate is inserted into seafloor sediments, a testing device, termed the SPI purpose-built sediment chamber (SPI-PUSH) was designed and used in a series of experiments to quantify smearing where luminophores were used to demonstrate the extent of particle displacement caused by a flat plate being pushed into the sediment. Here, we show that the plate of the SPI-PUSH caused significant smearing, which varied with sediment type and the luminophore grain size. The mean particle smearing measured directly behind the inserted plate was 2.9 ± 1.5 cm for mud sediments with sand-like luminophores, 4.3 ± 2.5 cm for fine sand sediments with sand-like luminophores and 1.9 ± 1.1 cm for medium sand sediments with mud-like luminophores. When the mean depth of particle smearing was averaged over a larger sediment volume (11 cm3) next to the inserted plate, substantial differences were seen between the plate-insertion experiments and controls highlighting the potential extent of smearing artefacts that may be produced when a SPI camera penetrates the seafloor. This experimental data shows that future studies using the SPI camera, or any other periscope-like device (e.g., planar optodes) need to acknowledge that smearing may be significant. Furthermore, it highlights that a correction factor may need to be applied to these data (e.g., the depth of apparent redox potential discontinuity layer) to correctly interpret SPI camera images and better determine the effect of anthropogenic impacts on seafloor habitats

    Biological responses to disturbance from simulated deep-sea polymetallic nodule mining

    Get PDF
    Commercial-scale mining for polymetallic nodules could have a major impact on the deep-sea environment, but the effects of these mining activities on deep-sea ecosystems are very poorly known. The first commercial test mining for polymetallic nodules was carried out in 1970. Since then a number of small-scale commercial test mining or scientific disturbance studies have been carried out. Here we evaluate changes in faunal densities and diversity of benthic communities measured in response to these 11 simulated or test nodule mining disturbances using meta-analysis techniques. We find that impacts are often severe immediately after mining, with major negative changes in density and diversity of most groups occurring. However, in some cases, the mobile fauna and small-sized fauna experienced less negative impacts over the longer term. At seven sites in the Pacific, multiple surveys assessed recovery in fauna over periods of up to 26 years. Almost all studies show some recovery in faunal density and diversity for meiofauna and mobile megafauna, often within one year. However, very few faunal groups return to baseline or control conditions after two decades. The effects of polymetallic nodule mining are likely to be long term. Our analyses show considerable negative biological effects of seafloor nodule mining, even at the small scale of test mining experiments, although there is variation in sensitivity amongst organisms of different sizes and functional groups, which have important implications for ecosystem responses. Unfortunately, many past studies have limitations that reduce their effectiveness in determining responses. We provide recommendations to improve future mining impact test studies. Further research to assess the effects of test-mining activities will inform ways to improve mining practices and guide effective environmental management of mining activities

    Open Ocean Deep Sea

    Get PDF
    The deep sea comprises the seafloor, water column and biota therein below aspecified depth contour. There are differences in views among experts and agencies regarding the appropriate depth to delineate the “deep sea”. This chapter uses a 200 metre depth contour as a starting point, so that the “deep sea” represents 63 per cent of the Earth’s surface area and about 98.5 per cent of Earth’s habitat volume (96.5 per cent of which is pelagic). However, much of the information presented in this chapter focuses on biodiversity of waters substantially deeper than 200 m. Many of the other regional divisions of Chapter 36 include treatments of shelf and slope biodiversity in continental-shelf and slope areas deeper than 200m. Moreover Chapters 42 and 45 on coldwater corals and vents and seeps, respectively, and 51 on canyons, seamounts and other specialized morphological habitat types address aspects of areas in greater detail. The estimates of global biodiversity of the deep sea in this chapter do include all biodiversity in waters and the seafloor below 200 m. However, in the other sections of this chapter redundancy with the other regional chapters is avoided, so that biodiversity of shelf, slope, reef, vents, and specialized habitats is assessed in the respective regional or thematic chapters. AB - The deep sea comprises the seafloor, water column and biota therein below aspecified depth contour. There are differences in views among experts and agencies regarding the appropriate depth to delineate the “deep sea”. This chapter uses a 200 metre depth contour as a starting point, so that the “deep sea” represents 63 per cent of the Earth’s surface area and about 98.5 per cent of Earth’s habitat volume (96.5 per cent of which is pelagic). However, much of the information presented in this chapter focuses on biodiversity of waters substantially deeper than 200 m. Many of the other regional divisions of Chapter 36 include treatments of shelf and slope biodiversity in continental-shelf and slope areas deeper than 200m. Moreover Chapters 42 and 45 on coldwater corals and vents and seeps, respectively, and 51 on canyons, seamounts and other specialized morphological habitat types address aspects of areas in greater detail. The estimates of global biodiversity of the deep sea in this chapter do include all biodiversity in waters and the seafloor below 200 m. However, in the other sections of this chapter redundancy with the other regional chapters is avoided, so that biodiversity of shelf, slope, reef, vents, and specialized habitats is assessed in the respective regional or thematic chapters.https://nsuworks.nova.edu/occ_facbooks/1050/thumbnail.jp
    corecore